CERES Cloud Property Retrievals from Imagers on TRMM, Terra, and Aqua
نویسندگان
چکیده
The microand macrophysical properties of clouds play a crucial role in Earth’s radiation budget. The NASA Clouds and Earth’s Radiant Energy System (CERES) is providing simultaneous measurements of the radiation and cloud fields on a global basis to improve the understanding and modeling of the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. Cloud properties derived for CERES from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites are compared to ensure consistency between the products to ensure the reliability of the retrievals from multiple platforms at different times of day. Comparisons of cloud fraction, height, optical depth, phase, effective particle size, and ice and liquid water paths from the two satellites show excellent consistency. Initial calibration comparisons are also very favorable. Differences between the Aqua and Terra results are generally due to diurnally dependent changes in the clouds. Additional algorithm refinement is needed over the polar regions for Aqua and at night over those same areas for Terra. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget. keywords: radiation, clouds, remote sensing, cloud microphysics, climatology, MODIS, CERES, VIRS, Aqua, Terra
منابع مشابه
Geostationary Visible Imager Calibration for the CERES SYN1deg Edition 4 Product
The Clouds and the Earth’s Radiant Energy System (CERES) project relies on geostationary (GEO) imager derived TOA broadband fluxes and cloud properties to account for the regional diurnal fluctuations between the Terra and Aqua CERES and MODIS measurements. Anchoring the GEO visible calibration to the MODIS reference calibration and stability is critical for consistent fluxes and cloud retrieva...
متن کاملAdvances in Earth Radiation Budget Observations from Ceres Terra
The goal of the Clouds and the Earth's Radiant Energy System (CERES) project is to provide a long-term record of radiation budget at the top-of-atmosphere (TOA), within the atmosphere, and at the surface with consistent cloud and aerosol properties at climate accuracy [1]. CERES consists of an integrated instrument-algorithm-validation science team that provides development of higher-level prod...
متن کاملComparison of CERES-MODIS stratus cloud properties with ground- based measurements at the DOE ARM Southern Great Plains site
[1] Overcast stratus cloud properties derived for the Clouds and the Earth’s Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surfa...
متن کاملTwo MODIS Aerosol Products over Ocean on the Terra and Aqua CERES SSF Datasets
Understanding the impact of aerosols on the earth’s radiation budget and the long-term climate record requires consistent measurements of aerosol properties and radiative fluxes. The Clouds and the Earth’s Radiant Energy System (CERES) Science Team combines satellite-based retrievals of aerosols, clouds, and radiative fluxes into Single Scanner Footprint (SSF) datasets from the Terra and Aqua s...
متن کاملDevelopment of empirical angular distribution models for smoke aerosols: Methods
[1] Using broadband shortwave radiance measurements from the Clouds and Earth Radiant Energy System (CERES) sensors onboard the Terra and Aqua satellites, empirical angular distribution models (EADM) are constructed for smoke aerosols. These EADMs are constructed for smoke aerosols emitted during the biomass burning season (August‐October), in South America. All available years (2000–2008) of b...
متن کامل